
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XXXX 1

Digital Twin Empowered PV Power Prediction
Xiaoyu Zhang, Yushuai Li, Member, IEEE, Tianyi Li, Member, IEEE, Yonghao Gui, Member, IEEE,

Qiuye Sun, Senior Member, IEEE, David Wenzhong Gao, Fellow, IEEE

Abstract—The accurate prediction of photovoltaic (PV) power
generation is significant to ensure the economic and safe oper-
ation of power systems. To this end, the paper proposes a new
digital twin (DT) empowered PV power prediction framework
that is capable of ensuring reliable data transmission and employ-
ing the DT to achieve high accuracy of power prediction. With
this framework, considering potential data contamination in the
collected PV data, a generative adversarial network is employed
to restore the historical data set, which offers a prerequisite
to ensure accurate mapping from the physical space to the
digital space. Further, a new DT empowered PV power prediction
method is proposed. Therein, we model a DT that encompasses
a digital physical model for reflecting the physical operation
mechanism and a neural network model (i.e., a parallel network
of convolution and bidirectional long-short-term memory model)
for capturing the hidden spatial-temporal features. The proposed
method enables the use of the DT to take advantages of the
digital physical model and the neural network model, resulting in
enhanced prediction accuracy. Finally, a real data set is conducted
to access the effectiveness of the proposed method.

Index Terms—Photovoltaic Power Prediction; Digital Twin;
Hybrid Prediction Method; Data Recovery.

I. INTRODUCTION

W ITH the increasing integration of PV power generation,
its nonlinearity, periodicity, and volatility pose great

challenges to the stable operation of power systems. The
uncertain of the PV power generation and the randomness of
the energy demand may lead to imbalance between the energy
supply and demand. Accurate prediction models can mitigate
the impacts of uncertainty of PV power generation, improve
power system stability, and reduce the maintenance costs of
additional equipments [1]–[3].

Currently, several studies on PV power prediction have been
proposed, which can be roughly divided into three categories:
1) the physical methods; 2) the statistical methods; and 3)
the artificial intelligence (AI)-based methods. The concept
of physical methods is to use physical models to construct
the relationship between PV power output and other factors,
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methods is to apply statistical principles to extract correlations
and variation patterns from historical data, such as Bayesian
model averaging (BMA) [7], exponential smoothing [8], and
autoregressive integrated moving average (ARIMA) [9]. Both
physical and statistical methods have the advantage on obtain-
ing stable PV power prediction. However, it is very difficult
to establish a physical model that can obtain high accuracy
prediction results for every prediction scenario, since there
exist several hidden features that are hard to capture via
mechanism analysis. Meanwhile, statistical methods mainly
focus on using historical data of power generation, which
ignores weather conditions. It results in limited prediction
accuracy [10].

To cope with shortcomings of physical and statistical meth-
ods, the AI-based methods for PV power generation have been
proposed and gained significant attentions. For instance, Con-
volutional Neural Networks (CNNs) were used for extracting
spatial features [11]–[13], while Long Short-Term Memory
(LSTM) networks were used for extracting temporal features
[14]–[16]. CNNs do not fully consider the temporal charac-
teristics of the input data, and LSTM networks have limited
ability to capture causal relationships between input factors.
To address this issue, hybrid models based on CNN and
LSTM were proposed in [17], [18]. Additionally, Graph Neural
Networks (GNNs) [19], [20], particularly Graph Convolutional
Networks (GCNs) [21], [22], are often combined with graph
modeling methods to explore causal relationships among input
factors [23]. Nevertheless, GNNs and GCNs primarily focus
on the neighboring information of nodes and have limited
modeling capabilities for time-series data, which may pose
challenges when dealing with graphs with complex topological
structures. Recently, Generative Adversarial Networks (GANs)
with capabilities in image restoration and data completion,
have also been used to address PV power prediction problems.
In [24], a generator based on Recurrent Neural Network
(RNN) was employed to predict solar power, while a CNN
discriminator was utilized to enhance the prediction accuracy
of the generator. However, when training data is imbalanced or
samples are scarce, it may lead to unreliable power prediction
results generated by a GAN.

The aforementioned PV prediction models are built up on
the assumption that the dataset is complete [11]–[24]. In
fact, varying degrees of pollution are usually observed in the
collected measurement data, which may be caused by data
logger failures, communication network failures, and inaccu-
rate instruments, etc. Learning samples with these unexpected
pollutants may lead to bias in prediction results. To address
this issue, the PV power generation is predicted based on a
recursive long and short-term memory network in [25], which
considers the possible quality problems of the dataset. The

such as numerical weather prediction (NWP) data [4], sky
images [5], and satellite images [6]. The concept of statistical
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missing data is estimated using a recursive process. However,
the robustness of the method is reduced when the testing
data loss rate significantly differs from the training data loss
rate. Moreover, this approach does not consider the continuous
missing data patterns in the data-set. In [26], a super-resolution
perception convolutional neural network was employed to
recover missing data, and a stochastic configuration network
(SCN) was utilized for PV power generation prediction. How-
ever, the quality of data recovery needs improvement, which
subsequently affects the accuracy of PV power prediction. In
addition, even if the data set is complete, there may exist
data imbalance. In [27], data augmentation methods, e.g. noise
injection, color space transformations, and mixing of images,
were used to expand a small amount of sky image data under
cloudy conditions. Meanwhile, the CNN was used to predict
short-term PV output. In [28], the dataset was augmented with
complementary exogenous features, including the periodic
properties of the production, altitude, azimuth, and irradiance
of solar, and clear and overcast days, etc. Then, a hybrid neural
network model was proposed to predict PV power generation.

The aforementioned AI-based methods have yielded re-
markable outcomes. However, there exist two challenges. On
the one hand, although the consideration of data recovery
is presented in [25] and [26], the implementation of these
methods is challenging; meanwhile, the quality of the recov-
ered data is insufficient. To address this issue, a potential
approach is the utilization of the GAN. It is a framework
for training parameter generation models, which is capable
of learning arbitrarily complex probability distributions. The
success of GANs in image restoration [29] and traffic data
completion [30] serves as inspiration for applying GANs to
learn the distribution of PV data, thus tackling the challenging
task of recovering large-scale historical data. On the other
hand, these AI-based methods [11]–[26] are predominantly
developed using historical data, such as power generation and
meteorology data, without taking into account the specific
physical characteristics of the PV system itself. It should be
noted that the actual state of the PV power station, particularly
the physical condition of the PV panels, significantly impacts
the power generation process. To address this issue, the DT
technology provides an alternative solution. The DT refers
to the construction of a virtual system in a virtual space
that utilizes physical models and operational historical data
to accurately represent and map the physical entity or process
[31]. The advantages of DTs can be divided into the following
three points: 1) The DT is an accurate virtual simulation
of a real world entity, process, or system, which allows us
to perform various tests, predictions, and optimizations in a
virtual environment without actually manipulating real world
objects. It results in saved time and money [32]; 2) The DT
is capable of sharing information with the physical entities
in real time, resulting in the synchronization of information.
This is helpful to make fast and accurate decision making
[33]; 3) The DT can leverage the digital physical models to
describe the behavior of real systems, and combine with data-
driven machine learning methods to achieve accurate modeling
and prediction of real systems [34]. These advantages make
DT be an innovative method and tool that can be applied to

multiple fields. For instance, a two-level hierarchical learning
process using the real-time model state stored on the DT server
was proposed in [35], which aims to enhance the ML-based
product design on a DT-aided IoT platform. An intelligent
context-aware medical system was implemented in [36] by
using a DT-based framework. Meanwhile, an electrocardio-
gram (ECG) heart rhythms classifier model was built by using
machine learning to diagnose heart disease and detect heart
problems. In addition, the DT was also used for product quality
prediction [37], intelligent transportation [38], and smart home
[39]. Although the DT has gained broad applications, it has not
be applied to PV power prediction. Based on the advantages
of the DT, our aim is to jointly create the digital physical
model to reflect the inherent mechanism of PVs and use the
neural networks to capture the hidden features that are hard to
be modeled by physical model. In the sense, we can create a
high-fidelity DT to reflect the reality well by taking advantages
of physical knowledge and learned data knowledge, resulting
in enhanced prediction accuracy. However, no attention has so
far been paid to this aspect.

To tackle those challenges, the paper proposes the DT
empowered framework, model, and method for PV power
generation prediction. The main contributions are as follows:

1) We propose a novel DT empowered PV power prediction
framework, composed of a physical layer, a data transmission
layer, a DT layer, and a service layer, while defining the de-
tailed functionality of each layer. This is a universal reference
framework that enables the integration of the DT to empower
the PV power prediction.

2) To ensure accurate mapping from the physical to the dig-
ital space, a GAN is employed to restore the historical dataset,
considering potential data contamination in the collected PV
data. This restoration process serves as a prerequisite for
reliable data analysis and prediction within the DT framework.

3) A DT empowered PV power prediction method is pro-
posed, where the DT is constructed with a digital physical
model and a parallel network of convolution and bidirectional
long-short-term memory (CNN-BiLSTM) model. This pro-
posed method captures both the physical operation mechanism
and hidden spatial-temporal features, leveraging the strengths
of both models to increase prediction accuracy.

The remainder is summarized as follows. Section II presents
the DT empowered PV power prediction framework. Section
III provides the DT empowered prediction method within the
proposed framework. Section IV presents the simulations to
evaluate the performance of the proposed method. Finally,
Section V concludes the paper.

II. DT EMPOWERED PV POWER PREDICTION
FRAMEWORK

Fig. 1 shows that the proposed DT empowered PV power
prediction framework, which is composed of a physical layer,
a data transmission layer, a DT layer, and a service layer.

1) Physical layer: It refers to physical objects in the real
world, such as PV panels and sensors. The layer will collect
and store device parameters, the PV power generation data
and the meteorological data. Device parameters include short-
circuit current ISC , open-circuit voltage UOC , data at the
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Fig. 1. PV power prediction framework.

maximum power point (current Im, voltage Um, and maximum
power P0m), and volt-ampere characteristic curve of the PV
cell. According to different sampling time points, historical
datasets can be expressed as:

Dxp = [Dxp(1), Dxp(2), · · · , Dxp (nT )]
T
, (1)

X = [X(1), X(2), · · · , X (nT )]
T
, (2)

P = [P (1),P(2), · · · ,P (nT )]
T
, (3)

where Dxp (j) represents historical data, including temper-
ature, wind speed, solar radiation, relative humidity, and
PV power generation, etc., collected at the jth sampling;
Dxp (j) = {X (j) , P (j)}; nT represents the time dimension
of the data; X (j) and P (j) represent the historical meteoro-
logical data and historical PV power generation data collected
at the jth sampling time point, respectively.

2) Data transmission layer: This layer serves as the con-
nection channel between the physical and virtual spaces,
enabling the collection and transmission of relevant data
information from the PV power station. During data collection,
the loss of data packets is possible, leading to incomplete time
series data in the analysis of historical PV power generation
data. To address this issue, we propose the utilization of a
GAN for data recovery, which will be discussed in Section
III-A. The historical data restored by GAN and the parameter
data of PV panels, sensors, and other devices are transmitted
from the physical space to the virtual space at one time,
participating in the construction of the DT model of the PV
power station. The real-time weather data is transmitted in
real-time from the physical space to the virtual space, which
enables participating in the power prediction of the DT layer.

3) DT layer: As the main part of this paper, this layer
focuses on creating the DT model and using it to achieve PV
power generation. In order to accurately reflect the real world

and create a high-fidelity DT model, it is necessary to consider
the physical characteristics of the PV system and extract the
inherent relationships within the historical data simultaneously.
In the virtual space, we set up a digital physical model that
can reflect the physical operation mechanism and a parallel
CNN-BiLSTM model to capture hidden temporal and spatial
features. These components are combined using a fusion for-
mula to accomplish the prediction of PV power. The detailed
DT modeling process and the prediction procedure will be
discussed in Section III-B and Section III-C, respectively.

4) Service layer: This layer receives the prediction results
from the DT layer to meet diverse services, such as: 1)
providing reference for energy dispatch and optimization; 2)
optimizing the charging/discharging control for battery; and 3)
facilitating demand response programs.

III. DT EMPOWERED PV POWER PREDICTION METHOD

Within the proposed framework, we propose the DT em-
powered prediction method that contains three phases: 1)
data preparation phase, 2) DT modeling phase; and 3) power
prediction phase. Fig. 2 illustrates the overall flowchart. Next,
we proceed to elaborate the design of each phase.

A. Data Preparation Phase
The data preparation phase is performed within the data

transmission layer. In this phase, the data transmission layer
retrieves pertinent data from the PV power station. The
historical meteorological and power data are fed into the
GAN. Subsequently, the recovered historical data and device
parameters are transferred from the physical layer to the DT
layer at one time to participate in the construction of DT
model. Real-time weather data is transmitted from the physical
layer to the DT layer, which is used for subsequent PV power
prediction.
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Fig. 2. Flowchart of the DT empowered prediction method.

1) Tensor modeling of historical data: Historical weather
and power data collected from PV sites are combined and
modeled as a tensor.

Firstly, c adjacent vectors Dxp1, Dxp2, . . . , Dxpc

are established for Dxp, with a time interval of
one sampling interval, i.e., 15 minutes, The adjacent
vectors X1, X2, . . . , Xc and P1, P2, . . . , Pc adjacent
to X and P are also established. For example,
Dxp2 = {X2, P2} = [Dxp (2) , Dxp (3) , . . . , Dxp (l + 1)]

T

has two adjacent vectors Dxp1 = {X1, P1} =

[Dxp (1) , Dxp (2) , . . . , Dxp (l)]
T and Dxp3 = {X3, P3} =

[Dxp (3) , Dxp (4) , . . . , Dxp (l + 2)]
T, where l represents the

time step of the vector. It means that each vector contains
data of l sampling time points. The corresponding adjacent
vectors M1,M2, . . . ,Mc of the mask matrix can also be
obtained by using its procedure.

We represent Si as the ith training sample input into the

encoder encoder

1 2 3 4 5 6 7 8

Convolution Attention Deconvolution Concat A and B

encoder encoder

1 2 3 4 5 6 7 8

Convolution Attention Deconvolution Concat A and B

Fig. 3. Generator Network Structure.

GAN. Then, we have

Si =
[
Dxpi, Dxp(i+1), . . . , Dxpj , Pj , Pj , Pj , . . .

]
, (4)

where Si ∈ Rl×l and Si ∈ S; S represents all training
samples input into GAN; i < j, j − i + 1 = ⌊l/(nx + 1)⌋;
f = l%(nx + 1) is the number of padding vectors Pj , where
nx represents the number of meteorological factors. An binary
mask matrix M with the same shape as S is created to mark
the positions of missing elements. For the missing elements in
S, the corresponding elements in M are set to 0; meanwhile,
the rest of elements are set to 1.

After modeling the historical data into a tensor, the problem
of historical data recovery becomes the recovery of missing
elements in the tensor.

2) Data recovery: To achieve effective data recovery, we
employ the GAN consisting of a generator and a discrim-
inator, which is capable of learning the temporal features
of the data and capturing the intrinsic relationship between
meteorological data and power data. The generator uses a
CNN-based encoder-decoder structure. The encoder takes the
missing data set S0 = S ⊙ M as input and generates the
latent feature representation of S0, where ⊙ represents the
dot product operator. Then, the decoder obtains the latent
feature representation and outputs S, which includes the
recovered part of the missing data. Furthermore, to maximize
the utilization of the reliable data that is already presented in
set S0 during the data generation process, a U-net is adopted in
the generator to enhance feature extraction. The discriminator
takes the restored matrix S and the original complete matrix
S as inputs. The generator is trained to generate the restored
matrix S, while discriminator is trained to judge whether the
quality of the missing data recovery is realistic enough. The
employed generator and discriminator network structures are
shown in Fig. 3 and Fig. 4, respectively. Through the game
between the generator and the discriminator, effective data
recovery can be achieved.

3) The loss function of the GAN: Based on the description
of the model structure, the loss function for the generator and
discriminator is proposed.

The loss function of generator includes the adversarial loss
and the recovery loss. The adversarial loss is defined based
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on the output of discriminator, which represents the quality of
recovery of missing data, i.e.,

La = −ES,M [D(S̄)]. (5)

The recovery loss is defined as the masked root mean
squared error between S and S. Since La has already dealt
with the missing data part, the recovery loss mainly focuses
on the part of intact data. The mathematical expression of the
recovery loss is given by

Lr = ES,M [∥S ⊙M − S̄ ⊙M∥]. (6)

Next, the loss function of the generator is defined as

LG = La + Lr. (7)

The objective of the discriminator is to maximize the
discriminative value of real historical data and minimize the
discriminative value of the generator’s output. Therefore, the
loss function of the discriminator is defined as

LD = −ES [D(S)] + ES,M [D(S̄)]. (8)

B. DT Modeling Phase

In order to build a virtual model at the DT layer that can
accurately reflect the process of PV power generation in the
real world, we receive the device parameters and the historical
dataset after the data recovery from the transmission layer.
First, we construct a digital physical model to simulate the
internal mechanism of PV panel power generation. Then, a
parallel CNN-BiLSTM model is built and trained to extract
the inherent characteristics of meteorological factors and PV
power generation. Eventually, a combination formula is ap-
plied to connect the two models to form the DT model.

1) Digital physical model: This part is composed of the
underlying physical model and the power deviation correction
module. Specifically, the PV power plant is a device designed
to convert solar radiation into direct current electricity. It
primarily consists of solar cells, which are semiconductor
thin films that directly generate electricity when exposed
to sunlight of a specific irradiance. These solar cells can
produce voltage and current when connected in a circuit.
The power output of PV cells varies due to fluctuations in

weather conditions. Solar radiation plays a crucial role in
determining the power output, with higher temperatures to
reduce the efficiency of power generation components, while
strong winds can help to reduce the temperature of PV cells,
thereby increasing power generation. This behavior can be
effectively modeled using an equivalent circuit.

The formula for describing the output current of a single
diode equivalent circuit is given by

I = Ipv − Ish − Id, (9)

where Ipv is the photocurrent generated by the battery due to
incident solar radiation; Ish is the short-circuit current caused
by leakage at the edge of the battery and the formation of
metal bridges; Id is the diode current that comes from the
Shockley equation. The mathematical expressions of Ish and
Id are given by

Ish =
I ·Rs + V

Rsh
, (10)

Id =I0 ·
(
e

q·(V +I·Rs)
A·b·Tm − 1

)
, (11)

where V represents the voltage drop across the battery due to
incident solar radiation; Rs is the series resistance; Rsh is the
shunt resistance; I0 is the reverse saturation current; q is the
electron charge; A is the ideality factor of the diode; b is the
Boltzmann constant; Tm is the actual temperature of the PV
module, defined as

Tm = T +
G

µ0 + µ1 · ν
, (12)

where T is the ambient temperature; G is the real-time
irradiance; µ0 is the irradiance-induced shading effect; µ1 is
the effect of wind speed; and ν is the real-time wind speed.

The generated power of the solar cell, denoted as P0, is
calculated as.

P0 = V · I. (13)

There exist five unknown parameters, i.e., Ipv , I0, Rs,
Rsh, and A. By establishing five equations based on the
short-circuit current ISC , open-circuit voltage UOC , maximum
power P0m = Um · Im, dP

dV = 0 at the maximum power
point, and dI

dV = − 1
Rsh

at the short-circuit point, the unknown
parameters can be obtained. With those components, a physical
model of the PV power station can be constructed. The input
data are the environmental temperature T , real-time irradiance
G, and real-time wind speed ν, while the output data are the
output current I , voltage drop across the battery terminals V ,
and power generation P0.

Based on the predicted PV power data obtained from the
aforementioned underlying physical model, the model consid-
ers only environmental temperature, real-time irradiance, and
real-time wind speed as inputs. However, this approach fails to
account for the complex practical conditions of the PV power
station and other weather factors, leading to certain deviations
in the predicted results. To address this issue, a deviation
correction process is introduced. In this process, the similarity
in PV power output under the influence of external climate
conditions is taken into account, considering different seasons
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and sampling times within a day. By calculating and storing
the difference between the output power of the underlying
physical model and the actual historical power, it is possible to
determine a correction value. This correction value is then used
to adjust the predicted power from the underlying physical
model, resulting in more accurate prediction results within the
digital physical model. To implement the deviation correction,
the historical weather data that has been restored through the
use of GAN is employed as input to the underlying physical
model. Let P0 = [P0(1), P0(2), · · · , P0 (nT )]

T represent the
output power, and P denote the actual power. The difference
between the predicted power and the actual power of the
underlying physical model can be calculated as follows:

θ =P0 − P = [θ(1), θ(2), · · · , θ (nT )]
T
, θ ∈ RnT . (14)

According to (14), the revised value, denoted as E =
[E1, E2, · · · , EnT

]
T, can be calculated as

E0 =0, (15)

Ei =
β · Ei−1 + (1− β) · θ (i)

1− βi
, (16)

where β is an adjustable hyperparameter between 0 and 1.
As the historical dataset used for constructing the digital

physical model typically contains a large amount of data,
spanning more than one year, it is essential to fully utilize
this dataset while ensuring the stability of the revised value
calculation. To achieve this, the calculation result of the
revised value is averaged on a yearly basis, resulting in
Ē =

[
Ē1, Ē2, . . . , Ē365t

]T
. The formula for calculating the

elements in the Ē array is as follows:

Ēj =

{ 1
m

∑m
i=1 Ej+(i−1)·365t 1 ≤ j ≤ j0

1
m−1

∑m−1
i=1 Ej+(i−1)·365t j0 ≤ j ≤ 365t,

(17)

where j0 = nT%(365×t); m = ⌈nT / (365× t)⌉; t represents
the number of data sampling times per day.

After obtaining Ē, the power value of the corrected output
power at the j-th sampling time point, representing the pre-
dicted power of the digital physical model, can be calculated
as follows:

P̃D (j) = P0(j)− Ēj . (18)

2) Parallel CNN-BiLSTM model: To capture the under-
lying relationships among diverse meteorological data and
the temporal dependencies within the data, we propose a
parallel CNN-BiLSTM model, as depicted in Fig. 5. The
parallel CNN-BiLSTM network can simultaneously process
different parts of the input data and fully leverage the ca-
pabilities of parallel computing. This significantly enhances
computational efficiency and speeds up both model training
and inference processes. Furthermore, the parallel CNN and
BiLSTM layers facilitate the extraction and integration of data
features concurrently. This enables us to capture information
pertaining to various aspects of the data and to provide a potent
model representation, thereby improving prediction accuracy.
To be specific, the CNN component is employed to extract
intrinsic features between different data types within a defined
time step. Meanwhile, the BiLSTM is utilized to capture

Conv2D BiLSTM Flatten

FC Output

Conv2D BiLSTM Flatten

FC Output

Fig. 5. the structure of the parallel CNN-BiLSTM model.

deeper temporal features by considering information from
both the “forward” and “backward” directions. The parallel
architecture of the CNN and BiLSTM allows independent
extraction of intrinsic features from various data types and
deeper temporal features from the input data. These features
are then concatenated into a final feature vector, which is used
for predicting PV power generation.

Tensor modeling was conducted on the recovered historical
meteorological data and historical power data as Xc and Pc

respectively. Meanwhile, the predicted power of the neural
network model is defined as P̃ :

Xc = [Xc1, Xc2, . . . , XcnT
] , (19)

Pc = [Pc1, Pc2, . . . , PcnT
] , (20)

P̃N =
[
P̃N1, P̃N2, . . . , P̃NnT

]
, (21)

Xci =
[
xc(i−L), xc(i−L+1), · · · , xc(i−2), xc(i−1)

]T
, (22)

where Xci ∈ RL×nx represents the input data required to
predict the power at the ith sampling time point, L represents
the time step of the input data of the parallel CNN-BiLSTM
model, meteorological factors, e.g., temperature, wind speed,
solar irradiance and humidity. Note that Xci contains the time
series data. After normalization, it is viewed as the grayscale
image and served as input of Conv2D. In addition, Xci is
flattened and served as input of BiLSTM. xci represents the
meteorological data collected at the ith sampling time point;
Pci represents the power at the ith sampling time point; P̃Ni

represents the predicted power by the parallel CNN-BiLSTM
model. The loss function is set to

RMSE =

√√√√ 1

N

N∑
i=1

(
P̃Ni − Pci

)2

. (23)

where N represents the batch of samples for each training.
3) The combination formula of power prediction results:

In order to leverage the advantages of the digital physical
model and the parallel CNN-BiLSTM model, we design
the combination formula that is a linear combination of the
prediction results form the two models. The combined result
is used as the final predicted PV power. We define PD and
PN to represent the predicted values of the digital physical
model and the parallel CNN-BiLSTM model. The difference
θ1 between the real power and the predicted power from the
digital physical model as well as the difference θ2 between the
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real power and the predicted power from the parallel CNN-
BiLSTM model can be calculated as

θ1 =PD − P = [θ1 (1) , θ1 (2) , . . . , θ1 (nT )]
T
, (24)

θ2 =PN − P = [θ2 (1) , θ2 (2) , . . . , θ2 (nT )]
T
, (25)

In order to reduce the amount of data, maximize the
use of recovered historical data and avoid the contingency
of calculation results, the above two difference values are
averaged annually. The calculation formula is given by

θ̄κ(j) =

{ 1
m

∑m
i=1 θ(j + (i− 1) · 365t) 1 ≤ j ≤ j0

1
m−1

∑m−1
i=1 θ(j + (i− 1) · 365t) j0 ≤ j ≤ 365t,

(26)

where κ = 1 or 2.
According to (26), we can get the averaged differences θ̄1

and θ̄2, given by

θ̄1 =
[
θ̄1 (1) , θ̄1 (2) , . . . , θ̄1 (365t)

]T
, (27)

θ̄2 =
[
θ̄2 (1) , θ̄2 (2) , . . . , θ̄2 (365t)

]T
, (28)

where θ̄1 (j) ∈ θ̄1 and θ̄2 (j) ∈ θ̄2.
The combined formula of the power prediction results is

defined as

P̂ (j) = w1 (j)PD (j) + w2 (j)PN (j) , (29)

where w1 and w2 represent the weight coefficients of the
physical model predicted power and the parallel CNN-
BiLSTM model, respectively. The mathematical definitions of
the weight coefficients are designed as

w1 (j) =
kθ̄22 (j)

θ̄21 (j) + kθ̄22 (j)
, (30)

w2 (j) =
θ̄21 (j)

θ̄21 (j) + kθ̄22 (j)
, (31)

where k > 0 is a hyperparameter.

C. Power Prediction Phase

After finishing the phases of data preparation and DT mod-
elling, we proceed the final power prediction phase. Taking
the real-time weather data as input, we use the digital physical
model and the parallel CNN-BiLSTM model to calculate the
prediction results P̂D and P̂N . Then, the final predicted power
P̂ = w1P̂D+w2P̂N is obtained through the calculation of the
combined formula of the power prediction results.

Remark 1: The data augmentation method is a kind of data
preprocessing technique for expanding training data through a
series of transformations and extensions of the original data
set to generate new training samples. Distinguished from the
data augmentation methods, the DT focuses on creating the
data counterpart of the physical systems to provide simulation
and analysis. In the aspect of solving the prediction problem,
the data augmentation method enables the extension of train-
ing data to deal with the data imbalance and improve the
prediction accuracy. In this paper, the DT is used to create
digital physical models that reflect the intrinsic mechanisms of
physical systems, and use machine learning models to capture
hidden features that are difficult to analyze based on physical

models. This enables the integration of physical knowledge
and data-driven approaches to achieve accurate modeling and
prediction of real systems. In this paper, we have complete
real data set without the requirement of generating new data
set. Thus, we consider the introduction of the DT to increase
the prediction accuracy.

IV. SIMULATIONS

A. Preparation

1) Dataset: The real dataset comes from the Global In-
telligent Evolution Simulation Experiment Platform and En-
gineering Demonstration Application Project of Distributed
Information Energy System at Northeastern University. This
dataset contains historical records of relevant information
on power generation and weather conditions. Specifically, it
covers the period between 2016 and 2018 and includes data
recorded from 8:00 to 17:00 daily. The sampling interval is 15
minutes. The data types include temperature, wind speed, solar
irradiance, relative humidity, and PV output power. The first
24 months and the last 12 months of the historical data set are
taken as training and testing samples, respectively. The time
dimension of the data, the number of meteorological factors,
and the data sampling frequency of per day are nT = 40515,
nx = 12, and t = 37, respectively. To handle the missing
and abnormal data, invalid data is identified and set to 0 in
the mask matrix M . In order to eliminate data dimensions and
enhance data features, the historical data set is normalized and
then inputted into the GAN for data recovery to improve the
quality of the data set.

2) Network parameters: The structures of the neural net-
works of the generator and discriminator are listed in Table I
and Table II, respectively. The generator takes input data with
a time step of l = 92, nx +1 = 13, resulting in j − i+1 = 7
and f = 1. The convolutional layers in the generator network
employ SAME padding with a stride of s = 2. Similarly, the
convolutional layers in the discriminator network also adopt
SAME padding, with a stride of s = 2, except for the last
convolutional layer, which has a stride of s = 1. The Adam
optimizer is used for the GAN with the activation function
of Leaky Relu and keep-probability of 0.8. The input data
of the parallel CNN-BiLSTM model in the DT layer has a
time step of L = 12 and nx = 12 meteorological factors. We
chose the batch size as 64, epochs as 50, and the learning
rate as 0.0002. The network parameters are shown in Table
III, where the convolutional layer has no padding (i.e., p = 0)
with a stride of s = 1.

3) Performance evaluation metrics for prediction: We eval-
uate the accuracy of PV power prediction models by using the
root mean square error (RMSE) and the mean absolute error
(MAE), defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(
Pi − P̂i

)2

, (32)

MAE =
1

n

n∑
i=1

∣∣∣Pi − P̂i

∣∣∣ , (33)
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TABLE I
PARAMETERS OF THE GENERATOR NETWORK

Layer Part Kernel size Number

1 Convolution 4 ∗ 4 16
2 Convolution 3 ∗ 3 32
3 Attention
4 Convolution 4 ∗ 4 64
5 Deconvolution 4 ∗ 4 64
6 Attention
7 Deconvolution 3 ∗ 3 64
8 Deconvolution 4 ∗ 4 32

TABLE II
PARAMETERS OF THE DISCRIMINATOR NETWORK

Layer Part Kernel size Number

1 Convolution 3 ∗ 3 8
2 Convolution 3 ∗ 3 16
3 Convolution 5 ∗ 5 32
4 Attention
5 Convolution 3 ∗ 3 64
6 Convolution 4 ∗ 4 1

TABLE III
PARAMETERS OF THE PARALLEL CNN-BILSTM MODEL

Part Kernel size or Hidden size Number of convolutional kernels

Conv2D 1 4 ∗ 4 6
Conv2D 2 4 ∗ 4 6
Conv2D 3 3 ∗ 3 8
BiLSTM 1 64
BiLSTM 2 64

FC 1 128
FC 2 64
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Fig. 6. RMSE-β curve.
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Fig. 7. RMSE-k curve.

TABLE IV
TYPICAL DAY

Weather Style Winter Spring Summer Autumn

Sunny

9/1/2018 7/4/2018 13/7/2018 27/10/2018
10/1/2018 8/4/2018 14/7/2018 28/10/2018
11/1/2018 9/4/2018 15/7/2018 29/10/2018
12/1/2018 10/4/2018 16/7/2018 30/10/2018

Rainy

2/1/2018 16/4/2018 2/7/2018 14/10/2018
5/1/2018 29/4/2018 3/7/2018 15/10/2018

19/1/2018 17/5/2018 4/7/2018 16/10/2018
21/1/2018 27/5/2018 24/7/2018 21/10/2018

Extreme

3/1/2018 7/3/2018 28/6/2018 5/11/2018
4/1/2018 5/4/2018 6/7/2018 7/11/2018

27/1/2018 23/4/2018 22/7/2018 8/11/2018
19/2/2018 5/5/2018 17/8/2018 26/11/2018

where Pi is the measured PV power at the ith sampling time;
P̂i is the corresponding predicted value; n is the total number
of samples.

4) Hyperparameters determination: The hyperparameter β
of the deviation correction module in the digital physical
model and the hyperparameter k in the combination formula
of power prediction results are determined by using the grid
search method. The decision principle of β and k is that the
higher the accuracy of the predicted power, the better the
hyperparameter selection. It means that the hyperparameter
should be selected to minimize the RMSE. The searching re-
sults are shown in Fig. 6 and Fig. 7, respectively. Specifically,
it follows from Fig. 6 that the optimal value of hyperparameter
β is 0.8061. When β is 0, RMSE is 12.360. As β increases
to 0.8061, RMSE decreases to 9.669. As β further increases
to 1, RMSE increases to 17.291. According to Fig. 7, the
optimal value of hyperparameter k is 0.9809. When k = 0,
RMSE=5.367. As k increases to 0.9809, RMSE decreases to
4.293. As k further increases to 2, RMSE increases to 4.596.

B. Performance Evaluation and Comparison Analysis

In this case study, we focus on evaluating the perfor-
mance of the proposed DT empowered prediction method
by comparing with several baselines. The baselines include
CNN [11], LSTM [14], CNN-LSTM [18], and GCN [22]. We
compare the prediction accuracy of those methods for different
weather types (i.e., sunny, rainy, and extreme weather), and
different seasons (i.e., spring, summer , autumn, and winter).
Meanwhile, typical days are selected as shown in Table IV.

The prediction results by executing those methods on typical
days are displayed in Fig. 8. The performance evaluation
metrics, including all prediction results of the testing set, are
listed in Table V. In order to comprehensively compare the
predictive performance of the proposed method, Table VI and
Table VII list the values of RMSE and MAE after performing
the proposed method and baselines in different weather types
and seasons. Meanwhile, Table VIII presents the RMSE and
MAE values of the proposed method and baselines on all
testing samples. The following conclusions can be drawn:

1) The proposed method obtains the lowest RMSE and
MAE values compared to the baseline model, regardless of the
season and weather conditions. The lowest RMSE value means
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. The prediction PV power results of the proposed DT empowered method and baseslines: (a) Sunny weather in spring; (b) Rainy weather in spring;
(c) Extreme weather in spring; (d) Sunny weather in summer; (e) Rainy weather in summer; (f) Extreme weather in summer; (g) Sunny weather in autumn;
(h) Rainy weather in autumn; (i) Extreme weather in autumn; (j) Sunny weather in winter; (k) Rainy weather in winter; (l) Extreme weather in winter.

that the prediction performance of the proposed method is the
most stable and the error fluctuation range is small. The lowest
MAE value denotes that the difference between the predicted
results of the proposed method and the actual observed values
is the least.

2) In comparison to the LSTM and CNN models, the pro-
posed method is capable of extracting spatiotemporal features
from the dataset more effectively and has stronger abilities in
mining data features. Compared to the CNN-LSTM model,
the proposed method considers not only the inherent hidden
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TABLE V
COMPARISONS OF THE PROPOSED DT METHOD WITH BASELINES

Season Weather Style Evaluation Indicators DT CNN LSTM CNN-LSTM GCN

Spring

Sunny RMSE 5.4841 13.8077 9.1976 7.6780 11.36767
MAE 3.8838 7.3492 5.3634 5.3930 5.2880

Rainy RMSE 6.9357 12.8645 10.2409 8.0464 11.7896
MAE 5.0822 7.9312 5.9123 5.2222 6.2912

Extreme RMSE 3.6891 9.3243 7.4335 5.6493 8.7926
MAE 2.3016 5.3195 4.3060 3.2325 5.0059

Summer

Sunny RMSE 4.2208 7.0925 6.6126 5.5649 7.7595
MAE 3.2375 4.3243 4.2353 3.4159 5.1515

Rainy RMSE 5.4557 12.8795 10.3968 8.6488 13.4175
MAE 3.5505 8.0703 5.9831 4.8015 7.7678

Extreme RMSE 4.2045 13.2859 9.5298 7.7692 12.3455
MAE 2.7993 7.4703 5.4042 4.4423 7.0225

Autumn

Sunny RMSE 3.9254 10.3079 6.8957 6.2815 8.5103
MAE 2.8185 5.6227 4.4287 4.0632 4.7555

Rainy RMSE 3.3121 11.1165 8.2280 6.9399 9.8849
MAE 2.2533 6.3080 47879 4.4101 5.4118

Extreme RMSE 2.7799 6.1071 4.8034 3.6499 5.7009
MAE 1.5666 3.4169 2.6687 2.0296 3.1732

Winter

Sunny RMSE 4.9257 12.4006 7.9110 6.6768 9.4003
MAE 3.6179 7.7115 5.3117 4.3161 6.2213

Rainy RMSE 3.0111 6.4340 5.3785 4.7058 6.0889
MAE 1.7395 4.1226 3.3040 2.5032 3.8803

Extreme RMSE 3.0069 5.6353 3.7990 3.3466 5.1164
MAE 1.9092 3.3758 2.6538 2.1242 3.0018

TABLE VI
COMPARISONS IN DIFFERENT WEATHER TYPES

Weather Style Evaluation Indicators DT CNN LSTM CNN-LSTM GCN

Sunny RMSE 4.6787 11.7701 7.7518 6.6092 9.3590
MAE 3.3787 6.2900 4.5375 4.2887 5.2065

Rainy RMSE 4.7853 11.4384 8.6185 7.0423 10.4900
MAE 2.7853 6.4790 4.9233 4.1279 5.8891

Extreme RMSE 3.3973 8.7974 6.5928 5.2062 8.2042
MAE 2.1973 5.3658 3.8859 3.1043 4.7576

TABLE VII
COMPARISONS IN DIFFERENT SEASONS

Season Evaluation Indicators DT CNN LSTM CNN-LSTM GCN

Spring RMSE 5.2201 11.2352 8.2694 6.1115 9.8017
MAE 3.4201 7.1627 4.7939 4.1282 5.6451

Summer RMSE 4.5776 10.9193 8.6484 7.4751 9.6631
MAE 3.1776 6.6673 5.3002 4.1911 6.7146

Autumn RMSE 3.1688 8.9542 6.3748 4.9967 7.7242
MAE 2.1688 5.3829 3.5284 3.2643 4.4611

Winter RMSE 3.6216 7.7566 5.1221 4.9871 6.6926
MAE 2.4216 4.9165 3.7249 2.8665 4.1703

TABLE VIII
COMPARISONS ON ALL TEST SAMPLES

Evaluation Indicators DT CNN LSTM CNN-LSTM GCN

RMSE 4.2934 9.8195 6.9598 5.8476 9.1588
MAE 2.7841 6.2591 4.4019 3.7675 5.3338

features of weather and power data but also takes into ac-
count the practical conditions of photovoltaic panels and other
devices. For the GCN, it relies primarily on the adjacency
relationships of nodes, which limits information propagation
and leads to lower prediction accuracy. Consequently, the

TABLE IX
ABLATION ANALYSIS UNDER DIFFERENT WEATHER TYPES

Weather Style Evaluation Indicators DT Model-1 Model-2

Sunny RMSE 4.6787 14.1536 6.1925
MAE 3.3787 8.7514 3.2086

Rainy RMSE 4.7853 7.8433 6.6547
MAE 2.7853 4.8217 3.8305

Extreme RMSE 3.3973 3.7055 3.2356
MAE 2.1973 2.4293 2.3866

prediction accuracy of the proposed method is significantly
superior to that of baselines.
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(a) (b) (c)

Fig. 9. The prediction PV power results under ablation analysis:(a) Sunny; (b) Rainy; (c) Extreme.

TABLE X
ABLATION STUDIES IN DIFFERENT SEASONS

Season Evaluation Indicators DT Model-1 Model-2

Spring RMSE 5.2201 11.3062 5.3032
MAE 3.4201 7.2975 3.2701

Summer RMSE 4.5776 9.7968 6.1744
MAE 3.1776 5.8107 3.8261

Autumn RMSE 3.1688 6.2832 3.9064
MAE 2.1688 4.2208 2.2982

Winter RMSE 3.6216 9.5294 4.9965
MAE 2.4216 5.0249 2.7553

TABLE XI
ABLATION STUDIES IN ALL TESTING SAMPLES

Evaluation Indicators DT Model-1 Model-2

RMSE 4.2934 9.6687 5.3674
MAE 2.7841 5.5808 3.2338

C. Ablation Analysis

In order to further demonstrate the effectiveness of the
proposed method, ablation studies are conducted in this case
study. Fig. 9 displays the prediction results for three different
weather types, where one typical day is selected for each
weather type in four seasons, i.e., winter, spring, summer, and
autumn. Table IX and Table X compare the prediction accuracy
of the combined prediction results of the proposed method
with two different sub-methods, i.e., the digital physical model
(Model-1) and the parallel CNN-BiLSTM model (Model-2),
in different weather types and seasons. Table XI displays
the prediction performance of different methods in the entire
testing samples.

The results indicate that the combined version achieves
the highest prediction accuracy compared to the digital phys-
ical model and the parallel CNN-BiLSTM model. This is
because the proposed method takes advantages of both the
physical characteristics of PV power station and the inherent
data features between meteorological and power data. This
approach enables better simulation of real-world PV power
generation processes and achieves accurate prediction of PV
power generation.

V. CONCLUSION

In the paper, we have proposed a DT empowered PV power
prediction framework to achieve reliable data transmission and
power prediction with high accuracy. We have designed the
use of GAN for data recovery from historical data, which is
capable of significantly improving the quality of constructing
a DT virtual power station. This enhances the reliability of
mapping from the physical space to the digital space. We
have propsoed a novel DT empowered prediction method. By
integrating the digital physical model and the parallel CNN-
BiLSTM model, the proposed method effectively enhances
the prediction accuracy for PV power generation. Finally, the
testing results on the real data set from Northeastern University
show that the proposed method can achieve higher prediction
accuracy that the baselines in different scenarios. In future
work, we would like to investigate the integration of federated
learning to enhance the privacy of the proposed method.
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