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Abstract—Secure system operations rely on reliable network
structures. The loss of controllability may be the main reason
to cause cascaded failures for complex network, e.g., Energy
Internet (EI). However, the existing studies do not consider the
network controllability to guide the system reconfiguration. To
address this issue, the paper proposes a new structuring planning
method for EI with consideration of controllability and economy.
Firstly, the structure planning problem is modeled as a dynamic
optimization problem with the tradeoff objectives of maximum
social welfare and minimum driven nodes for long-term period.
Then, a mixed maximum matching and deep deterministic policy
gradient method is presented to obtain the approximate optimal
planning solution with strong adaptability. Finally, simulation
results demonstrate the effectiveness of the proposed method.

Index Terms—controllability, structure planning, energy inter-
net, cascading failure

I. INTRODUCTION

A further innovation of smart grid, Energy Internet (EI)
is required to accommodate all types of distributed energy
nodes with great flexibility in energy sharing [1], [2]. The
rapidly increasing distributed energy resources and intelligent
participators lead to a series of impacts on the security and
quality in the energy trading, control and operation in view
of coordination, intermittence, communication and physical
topology variabilities, and randomness, etc. As a promising
solution, the concept of energy router (ER) is proposed, which
is seen as an intelligent power electronics-based equipment
that can flexibly manage the energy flows in a similar fashion
as the information flows in Internet [3], [4].

EI and ER aim to accommodate all distributed energy
resources to increase the energy transmission efficiency and
optimize energy dispatch. ERs will serve as an essential
building block in the envisioned EI. Indicated by the name, the
ER is a technological combination of energy and information
exchanges. It has two major capabilities, namely, dynamic
adjustment of energy flows and real-time communications
among energy nodes, which also interact with each other
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within the context of a complex cyber-physical system. When
a large number of ERs are integrated into EI, it is needed to
develop new network architecture to achieve the cooperated
energy management of multi-ER and enhance the stability of
the entire EI system. In EI system composed of multiple ERs,
the stability and resilience of each multi-energy microgrid is
not only related to its own infrastructures but also affected
by the other multi-energy microgrids as well as the entire EI
communication and physical networks. The overall structure
planning along with analysis and integrated operations of
different energy resources and ERs contribute to enhanced
system hardening and resilience, and decrease the risk of
a system failure. Several planning methods with diversified
evaluation indices are established to guide the system structure
reconfiguration. For instance, the plant configuration for co-
generation systems was investigated in [5], where the annual
demands are used as the indices to construct the scale and
number of equipments. Considering the uncertainties of energy
loads, the expansion of coplanning of multiple energy systems
was studied in [6], [7], where the stochastic programming
method is employed to find the optimal operations. From the
perspective of low carbon, a bi-level expansion planning model
was proposed in [8], which is further solved by a decentralized
approach. Recently, literature [9] proposed an entropy-based
weighted approach to plan the energy allocation to support the
development of Beijing towards 2035.

Although the existing planning methods above have
achieved some satisfactory results, they mainly consider the
economy and low-carbon features, leading to limited scope.
Note that one common consequence in a blackout may be
the loss of the controllability, which could happen in any
kind of energy resources as well as converters and then
spread to other multi-energy microgrids, resulting in large-
scale cascading failure and huge economic losses. On the
contrary, if the system is controllable, we can add external
control inputs on some critical nodes to make the system states
be restricted into tolerant ranges, thus being able to decrease
the risk of fault. Thus, whether the system is controllable or



not contributes to an important effect on the security of the
whole EI system, which opens up a new way to guide the EI
system reconfiguration with better resilience. Related specific
challenges are as follows: (1) There exist strong heterogene-
ity and interaction among different multi-energy microgrids.
This implies that the controllability of different multi-energy
microgrids is interdependent. No existing research takes the
overall controllability of the EI into account. (2) Caused by the
network fault, the interconnected multi-energy microgrids may
be partitioned into several islands. Effective network structure
planning to protect the controllability of each multi-energy
microgrid and even the controllability of the whole EI system
is not addressed.

To tackle those challenges, this paper proposes a structure
planning method for EI from the perspective of controllability
together with economy. The major contributions are as follows:

1) We propose a new structure planning model that takes the
network controllability and economic operation into account,
simultaneously. To our best knowledge, it is the first time
to introduce the controllability index to guide the structure
planning for EI.

2) We propose a mixed maximum matching and deep deter-
ministic policy gradient method to solve the studied problem.
It is capable of obtaining the approximate optimal planning
solutions to protect tradeoff controllability and economy under
dynamically cascaded faults.

The rest of this paper is organized as follows. Section II
models the structure planning problem for EI, which is further
formulated as a dynamic optimization problem. Section III
proposes the mixed maximum matching and deep determinis-
tic policy gradient method. Section IV provides an illustrative
example to demonstrate the effectiveness of the proposed
method. Section V concludes this paper.

II. PROBLEM FORMULATION

In this paper, we jointly consider the controllability and
economy to guide the structure planning. The studied EI
is composed of multi-energy microgrids. For each multi-
energy microgrid, it integrates diversified energy generation
and conversion devices, including renewable generators (RGs),
renewable heating devices (RHDs), fuel generators (FGs), fuel
heating devices (FHDs), combined heat and power (CHP)
devices, electricity storages (ESs), heat storages (HSs), gas
producers (GPs). Meanwhile, the energy loads (ELs) in each
multi-energy microgrid contain power loads, heat loads and
gas loads, each of which contains a must-run load and a
schedulable load. Each multi-energy microgrid is equipped
with a local energy router (ER) which is employed to exchange
information with the cloud computing center and control the
energy exchange between the inside and the outside of the
multi-energy microgrid. The planning problem is formulated
as a dynamic optimization problem over period [0, T ] that is
divided into m time steps with time interval 4t = T/m.

A. Stochastic model of multi-energy microgrid
The EI is in stochastic environment because of the intermit-

tency and uncertain nature of the RGs, RHDs and must-run

loads. In practice, they are always regarded as undispatchable
units. It is very difficult to establish their explicit mathematical
models and forecast the exact generations as well as demands.
In order to take the stochastic characteristics into account, the
uncertainty variables at time t are modeled as

prei (t) = pre,†i (t) + δrei,p(t), δ
re
i,p(t) ∈ [δrei,p(t), δ

re

i,p(t)], (1)

hrei (t) = hre,†i (t) + δrei,h(t), δrei,h(t) ∈ [δrei,h(t), δ
re

i,h(t)], (2)

lmti,φ(t) = lmt,†i,φ (t) + δmti,φ(t), δmti,φ(t) ∈ [δmti,φ(t), δ
mt

i,φ(t)], (3)

where t denotes the time step; prei and hrei represent the power
and heat generations of RG and RHD, respectively; lmti,φ rep-
resents the must-run energy loads, in which φ = p, h, g refers
to power, heat and gas, respectively; pre,†i , hre,†i and lmt,†i,ϕ

represent the corresponding forecast values; δrei,p, δrei,h and δmti,ϕ
represent the forecast error, which can vary randomly within
the corresponding lower bounders (i.e., δrei,p, δrei,h, δmti,ϕ ) and
upper bounders (i.e., δ

re

i,p, δ
re

i,h, δ
mt

i,ϕ ) to embody the stochastic
characteristics. Moreover, we assume the forecast error obey
Gaussian distribution with confidence level 100(1 − ϑ)% to
reasonably determine the bounders.

B. Control model of multi-energy microgrid
Except for RGs, RHDs and must-run loads, the other

devices are considered to be schedulable, whose control model,
cost function and operation limits are discussed as follows.

1) FG, FHD model: At each time step, we denote pfui
and hfui as the energy outputs of the FG and FHD in ith
multi-energy microgrid, respectively. As schedulable energy
components, the operations of FG and FHD are driven by the
corresponding control commands denoted as ufui,p and ufui,h,
respectively. To simply notations, ϕ is used to represent p or
h. Then, the dynamics of the energy outputs for FG and FHD
between two adjacent time steps can be modeled as

ϕfui (t+ 1) = ϕfui (t) + kfui,ϕu
fu
i,ϕ(t), ϕ ∈ p, h (4)

where kfui,p is the control gain. In addition, the corresponding
cost functions as well as the capability constraints, which are
employed to guide the optimal control behavior, are often
modeled as the following non-quadratic form

C(ϕfui (t)) = afui,ϕ
(
ϕfui (t))

2
+ bfui,ϕϕ

fu
i (t) + cfui,ϕ

+ µfui,ϕexp
(
εfui,ϕϕ

fu
i (t)

)
, (5)

ϕfu
i
≤ ϕfui ≤ ϕ

fu
i , ϕ ∈ p, h (6)

where afui,ϕ, bfui,ϕ, cfui,ϕ, µfui,ϕ and εi,ϕ are nonnegative cost
coefficients; ϕfu

i
and ϕfui are the lower and upper bounds

of ϕfui , respectively.
2) CHP model: The CHP, generating power and heat simul-

taneously, is one of important device to link the power and
heat systems. We denote pchpi and hchpi as the power and heat
output of the CHP in i multi-energy microgrid. Meanwhile,
the corresponding control commands are defined as uchpi,p and
uchpi,h , respectively. Then, it control model is defined as

ϕchpi (t+ 1) = ϕchpi (t) + kchpi,ϕ u
chp
i,ϕ (t), ϕ ∈ p, h (7)



where kchpi,ϕ is the control gain. Furthermore, the cost function
and the local restrictions are often modeled as

C(pchpi (t), hchpi (t)) = achpi

(
pchpi (t)

)2
+ bchpi pchpi (t) + cchpi

+ αchpi

(
hchpi (t)

)2
+ βchpi hchpi (t)

+ εchpi pchpi (t)hchpi (t), (8)

ei,ηp
chp
i + fi,ηh

chp
i + zi,η ≥ 0, η = 1, 2, 3, 4 (9)

where achpi , bchpi , cchpi , αchpi , βchpi and εchpi are nonnegative
cost coefficients; ei,η , fi,η and zi,η are the coefficients of
the ηth linear inequality constraint determined by the feasible
operation region.

3) GS model: By using similarity method, the control model
for GS is formulated as

ggsi (t+ 1) = ggasi (t) + kgasi,g u
gas
i,g (t), (10)

where ggasi is the gas output of the GS in ith multi-energy
microgrid; ugasi,g is the control command; kgasi,g is the control
gain. The corresponding cost function and operation limits are
given by

C(ggasi (t)) = agasi

(
ggasi (t)

)3
+ bgasi

(
ggasi (t)

)2
+ cgasi ggasi (t) + dgasi , (11)

0 ≤ ggas
i
≤ ggasi ≤ ggasi , (12)

where agasi , bgasi , cgasi and dgasi are nonnegative cost coeffi-
cients; ggas

i
and ggasi are the lower and upper bounds of ggasi ,

respectively. It should be pointed out that (11) is a convex
function within the region (12).

4) ES, HS model: The ES and HS, which can conduce to
energy supplies or demands in each multi-energy microgrid,
play an important role in maintaining supply-demand balance,
and reducing peak as well as filling valley for long-term
planning. We denote psi (or hsi ) and SOCsi,p (or SOCsi,h) as the
exchanged power and stored energy of ES (or HS) in multi-
energy microgrid i, respectively. Therein, it is defined that psi
(or hsi ) is positive for discharging and negative for charging.
The received control commands for ES and HS in EB i is
denoted as usi,ϕ. Then, the control model for energy storage
devices is given by,

ϕsi (t+ 1) = ϕsi (t) + ksi,ϕu
s
i,ϕ(t), ϕ ∈ p, h (13)

where ksi,ϕ is the control gain. Since the utilization life
of storage devices can be reduced by the frequent chang-
ing/discharging operations, the operation penalty is taken into
account, which is formulated as

C(ϕsi (t)) = asi
(
ϕsi (t)

)2
, ϕ ∈ p, h (14)

where asi is positive plenty coefficient. Moreover, for each
storage device, its charging and discharging rates are restricted;
meanwhile, the stored energy should also be maintained within

a proper range to avoid deep charing and discharging. The
mathematical expressions are as follows

− ϕs,chi ≤ ϕsi ≤ ϕ
s,ds
i , ϕ ∈ p, h (15)

SOCsi,ϕ(t+ 1) = SOCsi,ϕ(t)

−
(
%chi,ϕσ

ch
i,ϕ(t) +

1

%dsi,ϕ
σdsi,ϕ(t)

)
ϕsi (t)4t, ϕ ∈ p, h (16)

SOCsi,ϕ ≤ SOCsi,ϕ ≤ SOC
s

i,ϕ, ϕ ∈ p, h (17)

σchi,ϕ(t) + σdsi,ϕ(t) ≤ 1, ϕ ∈ p, h (18)

where ϕs,chi and ϕs,dsi are the maximum charging and dis-
charging rates; %chi,ϕ and %dsi,ϕ are the charging and discharging
coefficients; σchi,ϕ, σ

ch
i,ϕ ∈ {0, 1} represent the operation state,

where σchi,ϕ = 1 and σchi,ϕ = 1 refer to charging and discharging
state, respectively; SOCsi,ϕ and SOC

s

i,ϕ are the allowed
lower and upper bounds of SOCsi,ϕ. In practice, we often set
SOCsi,ϕ = 0.2SOCs,capi,ϕ and SOCsi,ϕ = 0.8SOCs,capi,ϕ . There-
in, SOCs,capi,ϕ is the maximum capability of the corresponding
storage device.

5) Schedulable load models: The demand response can
provide the function of virtual storage which is further taken
into consideration to enhance the flexibility of the EI system.
lsli,p, lsli,h and lsli,g are denoted as the schedulable power, heat
and gas loads of ith EB with control commands usli,p, usli,h and
usli,g . Then, the dynamics of the schedulable load demands are
given by

lsli,φ(t+ 1) = lsli,φ(t) + ksli,φu
sl
i,φ(t), φ ∈ p, h, g (19)

where ksli,φ is the control gain. Driven by profit, it can create
sufficient incentives to increase the consumer participation,
which is determined by utility function shown as follows

U(lsli,φ(t)) =
∑

φ∈p,h,g

(
− asli,φ

(
lsli,φ(t) + lmti,φ(t)

)2
+ bsli,φ

(
lsli,φ(t) + lmti,φ(t)

))
, (20)

0 ≤ lsli,φ(t) ≤ lmaxi,φ (t)− lmti,φ(t), φ ∈ p, h, g (21)

where asli,φ and bsli,φ are utility coefficients; lmaxi,φ (t) are the
upper bound of the corresponding energy load.

In the considered EI system, there are some alternative
energy loads which can be afforded by different kinds of
supplier. That also means the power, heat and gas loads may
be transformed into each other with diversified energy demand
mix, which can be formulated as

Υ
g→p

i ≤ lsli,p/(lsli,p + Ψlsli,g) ≤ Υg→p
i , (22)

Υ
g→h

i ≤ lsli,h/(lsli,h + Ψlsli,g) ≤ Υg→h
i , (23)

Υ
p→h

i ≤ lsli,p/(lsli,p + lsli,h) ≤ Υp→h
i , (24)

where Υ
g→p

i , Υ
g→h

i and Υ
p→h

i are the lower bound of the
conversion percentages; Υg→p

i , Υg→h
i and Υp→h

i are the
upper bound of the conversion percentages; Ψ represents the
transformation ratio from SCM/h to MW. In practice, Ψ is
often set to 1/84.
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Fig. 1. Flowchart of mixed maximum matching and deterministic policy gradient algorithm.

C. Network controllability model

We can make use of graph to model the EI system, where
the energy devices/loads and the interconnected lines are seen
as the nodes edges, respectively. According to [10], a physical
system is able to be viewed as controllable if it has structural
controllability. Thus, we make the EI be spanned by cacti
with no inaccessible node and dilation, such that the whole
system possesses structural controllability. We can add addi-
tional control inputs on some nodes to restore the structural
controllability for a system. In a given set of faults, the
following critical objectives are designed to guide the planning
of system structure, 1) adding minimum control inputs for
driven nodes to maintain the structural controllability in each
microgid when it operates in islanded mode under time-and
space-varying scenarios; 2) identifying the minimum numbers
of driven nodes for EBs when they operate in interconnected
mode under time-and space-varying scenarios. The cascaded
fault models are used to simulate evolutions of the system
structure in both time and space domains. The computation
for dynamic driven nodes can be designed as

Nt,dr=

m∑
t=0

γt max {Nt −Mt, 1}, (25)

where Nt,dr represents cumulative future driven nodes; γt is
the discount factor; Nt and M represents the total number of
nodes and the size of the maximum matching.

D. Structure planning model for EI

Based on the models of multi-energy microgrid and network
controllability, we consider two trade-off objectives to guide
the structure planning i.e., maximizing the total social welfare
and minimizing the total driven nodes for long time [0, T ].
Meanwhile, a set of global supply-demand balance constraints
and operation constrains in each time step are considered to

evaluate and limit the planning operation. The mathematical
expressions are given by

max Obj =W

m∑
t=1

W (t)− NNt,dr, (26)

subject to

pma(t) =

n∑
i=1

(
prei (t) + pfui (t) + pchpi (t) + psi (t)

)
−

n∑
i=1

(
lmti,p (t) + lsli,p(t)

)
, (27)

hma(t) =

n∑
i=1

(
hrei (t) + hfui (t) + hchpi (t) + hsi (t)

)
−

n∑
i=1

(
lmti,h(t) + lsli,h(t)

)
, (28)

hma(t) =

n∑
i=1

ggasi (t)−
n∑
i=1

(
lmti,g (t) + lsli,g(t)

)
, (29)

and (1-4), (6-7), (9-10), (12-13), (15-19) and (21-25). Therein,

W (t) =

n∑
i=1

(
U(lsli,φ(t))− C(pchpi (t), hchpi (t))

−
∑
ϕ∈p,h

(
C(ϕfui (t)) + C(ϕsi (t))− C(ggasi (t))

)
−

∑
φ∈p,h,g

$Prφ(t)φma(t)

)
, (30)

is the total social welfare at time t; Prφ is the energy price of
the main energy networks; $ is the price ratio; φma expresses
the exchanged energy between the main networks and multi-
energy microgrids; W and N are positive constants. Since
the main networks tend to sell the energy with higher prices
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Fig. 2. Basis structures: (a) multi-energy microgrid 1. (b) multi-energy microgrid 2. (c) multi-energy microgrid 3. (d) multi-energy microgrid 4. (e) multi-energy
microgrid 5.

to multi-energy microgrids and buy enough cheaper energy
from multi-energy microgrids. To express the concept, we let
φma be positive for selling energy to multi-energy microgrids
with $ = 1 and negative for buying energy from multi-energy
microgrids $ = 0.8.

In addition, to unify the control operation, we set the
operation space of each control variable as {−1,−(τ −
1)/k, · · · , 0, · · · , (τ − 1)/τ, 1} with 2τ + 1 elements. In
this case, the corresponding control gains are endowed with
important practice significance which represents the maximum
adjustment value between two adjacent time steps.

III. SOLUTION METHOD

The studied problem belongs to a kind of complex dynamic
optimization problem that involves strong stochastic, non-
convex, and nonlinear. To obtain the approximate optimal
solution, we propose a mixed maximum matching and deep
deterministic policy gradient method. The flowchart of the
proposed method is reported in Fig. 1. During the plan-
ning process, the cascaded fault model [13] is employed to
generate different network structures. The proposed method
is employed to evaluate its feasibility and find the optimal
solution from the perspective of long-term planning. The major
procedures of the proposed method are illustrated as follows:

Step 1: Input the current network structure of EI system
and obtain the node set and edge set.

Step 2: Identify the system adjacency matrix based on the
physical structure.

Step 3: Calculate the minimum numbers of driven node of
EI system in time-and space-varying scenario based on (25).

Step 4: Remove the selected nodes and edges based on
the cascaded fault model [13] to obtain diversified network
structures for further simulations.

Step 5: Re-identify the system adjacency matrix after
performing cascaded fault.

Step 6: Implement the maximum matching algorithm [11]
to find the dynamic driven nodes.

Step 7: Performance deep deterministic policy gradient
algorithm [12] to solve problem (26) with a set of operation
constraints.

Step 8: If all nodes and edges have been identified, then
go to Step 9. Otherwise, go back to Step 4.

Step 9: Compare with the different solutions after cascaded
faults to obtain the optimal solution and provide reference
information to guide the structure planning.

IV. ILLUSTRATIVE EXAMPLE

To evaluate the proposed method, we follow [14] to set five
basis multi-energy microgrids as shown in Figs. 2(a-e). The
parameters of the cost/utilizty functions and constraints can be
found in [14].

A. System reconfiguration

In this section, we focus on reconfiguring the five basis
structures and combing them to form an EI system with the
balance of controllability and economy. We set T = 24 and
m = 24. It implies that we consider one day structure planning
problem. By performing the propose method, the newly built
EI system is shown in Fig. 3. It can be observed that the
structure of each multi-energy microgrid tends to be recon-
figured as multiple circle components. This further enables to
form cacti structure for the whole EI system with enhanced
controllability. For example, the ES, RG, FG and CHP in
multi-energy microgrid 1 are reconstituted as a circle structure
that is also called as a bud. As a controllable unit, the bud is
a part of cacti structure. Although one of the interconnected
line is disconnected caused by the cascaded faults, we do not
need to add extra control input to maintain the controllability.
This result implies that the planning structure possesses strong
controllability and robustness to defend cascaded faults, which
verifies the effectiveness of the proposed method.

B. Comparison analysis

In this section, we focus on texting the performance of the
planned structure by comparing with the one before planning
[14]. By using the same cascaded fault model [13], the
variations of the normalized objection function during [0, T ]
for the two structures are reported in Fig. 4. It can be observed
that the value of the normalized objection function under the
structure after planning is higher than the one before planning.
In addition, the rate of descent for the value of normalized
objection function under the structure after planning is less
than the one before planning. Those results imply that the
planned structure is capable of maintaining high economy and
controllability against cascaded faults.
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Fig. 3. Planning results of EI system with five multi-energy microgrids.

Fig. 4. Normalized objection function after cascaded fault.

CONCLUSION

This paper investigates the structure planning problem for
the EI. The controllability and economy have been proposed
to jointly build the model of the structure planning problem
that is further formulated as a complex dynamic optimiza-
tion problem. Then, a mixed maximum matching and deep
deterministic policy gradient method has been presented to
find approximate optimal solution that enables to defend the
cascaded faults from the perspective of long-term planning.
In the future, we will consider the influences of stability on
network planning.
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